22 research outputs found

    Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice.

    Get PDF
    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma

    Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury.

    Get PDF
    Obesity is a risk factor for the development of acute respiratory distress syndrome (ARDS) but mechanisms mediating this association are unknown. While obesity is known to impair systemic blood vessel function, and predisposes to systemic vascular diseases, its effects on the pulmonary circulation are largely unknown. We hypothesized that the chronic low grade inflammation of obesity impairs pulmonary vascular homeostasis and primes the lung for acute injury. The lung endothelium from obese mice expressed higher levels of leukocyte adhesion markers and lower levels of cell-cell junctional proteins when compared to lean mice. We tested whether systemic factors are responsible for these alterations in the pulmonary endothelium; treatment of primary lung endothelial cells with obese serum enhanced the expression of adhesion proteins and reduced the expression of endothelial junctional proteins when compared to lean serum. Alterations in pulmonary endothelial cells observed in obese mice were associated with enhanced susceptibility to LPS-induced lung injury. Restoring serum adiponectin levels reversed the effects of obesity on the lung endothelium and attenuated susceptibility to acute injury. Our work indicates that obesity impairs pulmonary vascular homeostasis and enhances susceptibility to acute injury and provides mechanistic insight into the increased prevalence of ARDS in obese humans

    Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.

    Get PDF
    The orphan nuclear receptor Nur77 plays critical roles in cardiovascular diseases, and its expression is markedly induced in the heart after beta-adrenergic receptor (β-AR) activation. However, the functional significance of Nur77 in β-AR signaling in the heart remains unclear. By using Northern blot, Western blot, and immunofluorescent staining assays, we showed that Nur77 expression was markedly upregulated in cardiomyocytes in response to multiple hypertrophic stimuli, including isoproterenol (ISO), phenylephrine (PE), and endothelin-1 (ET-1). In a time- and dose-dependent manner, ISO increases Nur77 expression in the nuclei of cardiomyocytes. Overexpression of Nur77 markedly inhibited ISO-induced cardiac hypertrophy by inducing nuclear translocation of Nur77 in cardiomyocytes. Furthermore, cardiac overexpression of Nur77 by intramyocardial injection of Ad-Nur77 substantially inhibited cardiac hypertrophy and ameliorated cardiac dysfunction after chronic infusion of ISO in mice. Mechanistically, we demonstrated that Nur77 functionally interacts with NFATc3 and GATA4 and inhibits their transcriptional activities, which are critical for the development of cardiac hypertrophy. These results demonstrate for the first time that Nur77 is a novel negative regulator for the β-AR-induced cardiac hypertrophy through inhibiting the NFATc3 and GATA4 transcriptional pathways. Targeting Nur77 may represent a potentially novel therapeutic strategy for preventing cardiac hypertrophy and heart failure

    Retraction Note: Obesity-induced adipokine imbalance impairs mouse pulmonary vascular endothelial function and primes the lung for injury

    Get PDF
    The Authors have retracted this Article. Afer publication of this Article, concerns have been raised about irregularities in the western blot data. In particular, the following bands appear to be duplicated: – Fig. 1e HFD/p-Src lane 1 and 3; – Fig. 4c NCD/Ve-cadherin lane 1 and 3 – Fig. 5e HFD+APN/ICAM-1 lane 1 and 2 – Fig. 5f HFD/beta-catenin lane 2 and HFD+APN/beta-catenin lane 1 – Fig. S1d HFD/beta-catenin all lanes – Fig. S4c NCD/beta-catenin lane 1 and 3. Additionally, the beta-catenin subpanel in Fig. 5f was subsequently reused in another study [1] and described as showing GRP87. Te Authors were unable to provide the original high resolution scanned images for these blots. Terefore, the validity of the presented results cannot be confrmed

    Noninvasive Intratissue Refractive Index Shaping (IRIS) of the Cornea with Blue Femtosecond Laser Light

    No full text
    The present study investigated the feasibility and effectiveness of blue-IRIS in living corneal tissue by using 400-nm femtosecond laser pulses with 1-nJ pulse energy, 80-MHz repetition rate and 100-fs pulse duration. Blue-IRIS induced refractive changes up to 0.037 in the corneal stroma at fast scanning speeds, providing a possible alternative method of noninvasively altering corneal power

    OGR1-dependent regulation of the allergen-induced asthma phenotype

    No full text
    The proton-sensing receptor, ovarian cancer G protein-coupled receptor (OGR1), has been shown to be expressed in airway smooth muscle (ASM) cells and is capable of promoting ASM contraction in response to decreased extracellular pH. OGR1 knockout (OGR1KO) mice are reported to be resistant to the asthma features induced by inhaled allergen. We recently described certain benzodiazepines as OGR1 activators capable of mediating both procontractile and prorelaxant signaling in ASM cells. Here we assess the effect of treatment with the benzodiazepines lorazepam or sulazepam on the asthma phenotype in wild-type (WT) and OGR1KO mice subjected to inhaled house dust mite (HDM; Dermatophagoides pteronyssius) challenge for 3 wk. In contrast to previously published reports, both WT and OGR1KO mice developed significant allergen-induced lung inflammation and airway hyperresponsiveness (AHR). In WT mice, treatment with sulazepam (a Gs-biased OGR1 agonist), but not lorazepam (a balanced OGR1 agonist), prevented allergen-induced AHR, although neither drug inhibited lung inflammation. The protection from development of AHR conferred by sulazepam was absent in OGR1KO mice. Treatment of WT mice with sulazepam also resulted in significant inhibition of HDM-induced collagen accumulation in the lung tissue. These findings suggest that OGR1 expression is not a requirement for development of the allergen-induced asthma phenotype, but OGR1 can be targeted by the Gs-biased OGR1 agonist sulazepam (but not the balanced agonist lorazepam) to protect from allergen-induced AHR, possibly mediated via suppression of chronic bronchoconstriction and airway remodeling in the absence of effects on airway inflammation
    corecore